听风居

听风居

岩土工程是什么

岩土工程:是欧美国家于20世纪60年代在土木工程实践中建立起来的一种新的技术体制。岩土工程是以求解岩体与土体工程问题,包括地基与基础、边坡和地下工程等问题,作为自己的研究对象。

编辑摘要

基本信息

中文名:          岩土工程
英文名:          Geotechnical Engineering
研究方向:          城市地下空间
行业特征:          企业数量多、规模小

目录

基本概念/岩土工程


岩土工程 Geotechnical Engineering
地上、地下和水中的各类工程统称 土木工程。土木工程中涉及岩石、土、地下水的部分称岩土工程。

发展现状/岩土工程

随着多种所有制工程施工企业的发展及跨区域经营障碍被打破,岩土工程市场已处于完全竞争状态。岩土工程项目承接主要通过公开招投标活动实现,行业内市场化程度较高,市场集中度偏低。
我国岩土工程行业具有企业数量多、规模小的特点。据《中国岩土工程行业发展前景与投资战略规划分析报告前瞻》统计,我国仅从事强夯业务的企业就超过300家,岩土工程行业的集中度较低,导致优势企业无法形成规模优势。这与发达国家该行业高度集中的特点形成了鲜明对比。
岩土工程行业在未来的发展中要解决行业分散、集中度过低的问题,提高整体竞争力进而提高盈利能力,需要在未来的发展中抓住时代机遇,适应时机,以更优的业务模式、调整行业业务结构类型,实现行业的飞速发展。
 

岩土工程学科专业/岩土工程


简介



岩土工程专业是土木工程的分支,是运用 工程地质学、 土力学岩石力学解决各类工程中关于岩石、土的工程技术问题的科学。按照 工程建设阶段划分,工作内容可以分为: 岩土工程勘察岩土工程设计、岩土工程治理、岩土工程监测、岩土 工程检测

主要研究方向



①城市地下空间与 地下工程:以城市地下空间为主体,研究地下空间开发利用过程中的各种环境岩土工程问题,地下空间资源的合理利用策略,以及各类 地下结构的设计、计算方法和地下工程的施工技术(如浅埋暗挖、盾构法、冻结法、降水排水法、沉管法、TBM法等)及其优化措施等等。
②边坡与 基坑工程:重点研究基坑开挖(包括基坑降水)对邻近既有建筑和环境的影响,基坑支护结构的设计计算理论和方法,基坑支护结构的优化设计和可靠度分析技术,边坡稳定分析理论以及新型支护技术的开发应用等。
地基与基础工程:重点开展地基 模型及其计算方法、参数研究, 地基处理新技术、新方法和 检测技术的研究,建筑基础(如 柱下条形基础、十字交叉基础、筏形基础、箱形基础及 桩基础等)与上部结构的共同作用机理和 规律研究等。

4、岩土的工程性质该研究方向主要开展岩土试样采集、实验室试验与原位测试技术的研究工作,通过试验分析确定岩土工程物理力学关系规律,进行岩土的本构关系研究。
5、岩体稳定与控制该方向主要研究巷道矿压理论研究及其应用、地下工程围岩结构分析、岩土工程数值模拟研究等。[1]
6、土工合成材料应用技术,主要研究各种类型土工合成材料的工程特性、土工合成材料结构的作用机理与应用新技术。
7、特殊土工程特性,主要研究黄土、膨胀土、盐渍土、冻土等特殊土的工程性质和工程应用技术。
8、地下工程及深基坑的环境影响与控制,主要研究地下工程与深基坑的环境影响理论及施工安全控制技术。[2]
 

岩土工程发展前景/岩土工程



展望岩土工程的发展,笔者认为需要综合考虑岩土工程学科特点、工程建设对岩土工程发展的要求,以及相关学科发展对岩土工程的影响。
岩土工程研究的对象是岩体和土体。岩体在其形成和存在的整个 地质历史过程中,经受了各种复杂的地质作用,因而有着复杂的结构和 地应力场环境。而不同地区的不同类型的岩体,由于经历的地质作用过程不同,其工程性质往往具有很大的差别。岩石出露地表后,经过风化作用而形成土,它们或留存在原地,或经过风、水及冰川的剥蚀和搬运作用在异地沉积形成土层。在各地质时期各地区的风化环境、搬运和沉积的动力学条件均存在差异性,因此土体不仅工程性质复杂而且其性质的区域性和个性很强。
岩石和土的强度特性、变形特性和渗透特性都是通过试验测定。在室内试验中,原状试样的代表性、取样过程中不可避免的扰动以及 初始应力的释放,试验边界条件与地基中实际情况不同等客观原因所带来的误差,使室内试验结果与地基中岩土实际性状发生差异。在原位试验中,现场测点的代表性、埋设测试元件时对岩土体的扰动,以及测试方法的可靠性等所带来的误差也难以估计。
岩土材料及其试验的上述特性决定了岩土工程学科的特殊性。岩土工程是一门应用科学,在岩土工程分析时不仅需要运用 综合理论知识、室内外测成果、还需要应用工程师的经验,才能获得满意的结果。在展望岩土工程发展时不能不重视岩土工程学科的特殊性以及岩土工程问题分析方法的特点。
土木工程建设中出现的岩土工程问题促进了岩土工程学科的发展。例如在土木工程建设中最早遇到的是土体稳定问题。土力学理论上的最早贡献是1773年库伦建立了库伦定律。随后发展了Rankine(1857)理论和Fellenius(1926)圆弧滑动分析理论。为了分析软粘土地基在荷载作用下沉降随时间发展的过程,Terzaghi(1925)发展了一维固结理论。回顾我国近50年以来岩土工程的发展,它是紧紧围绕我国土木工程建设中出现的岩土工程问题而发展的。在改革开放以前,岩土工程工作者较多的注意力集中在 水利、铁道和矿井工程建设中的岩土工程问题,改革开放后,随着高层建筑、城市地下空间利用和 高速公路的发展,岩土工程者的注意力较多的集中在 建筑工程市政工程交通工程建设中的岩土工程问题。土木工程功能化、城市立体化、交通高速化,以及改善综合居往环境成为 现代土木工程建设的特点。人口的增长加速了城市发展,城市化的进程促进了大城市在数量和规模上的急剧发展。人们将不断拓展新的 生存空间,开发地下空间,向海洋拓宽,修建跨海大桥、海底隧道和人工岛,改造 沙漠,修建高速公路和 高速铁路等。展望岩土工程的发展,不能离开对我国现代土木工程建设发展趋势的分析。
一个学科的发展还受科技水平及相关学科发展的影响。二次大战后,特别是在20世纪60年代以来,世界科技发展很快。电子技术和 计算机技术的发展,计算分析能力和测试能力的提高,使岩土工程计算机分析能力和室内外测试技术得到提高和进步。 科学技术进步还促使岩土工程新材料和新技术的产生。如近年来 土工合成材料的迅速发展被称为岩土工程的一次革命。现代科学发展的一个特点是学科间相互渗透,产生 学科交叉并不断出现新的学科,这种发展态势也影响岩土工程的发展。
岩土工程是20世纪60年代末至70年代初,将土力学及 基础工程工程地质学岩体力学三者逐渐结合为一体并应用于土木工程实际而形成的新学科。岩土工程的发展将围绕现代土木工程建设中出现的岩土工程问题并将融入其他学科取得的新成果。岩土工程涉及 土木工程建设中岩石与土的利用、整治或改造,其基本问题是岩体或土体的稳定、变形和渗流问题。笔者认为下述12个方面是应给予重视的研究领域,从中可 展望21世纪岩土工程的发展。

区域性土分布和特性/岩土工程



经典土力学是建立在无结构强度理想的 粘性土和无粘性土基础上的。但由于形成条件、形成年代、组成成分、应力历史不同,土的工程性质具有明显的区域性。 周镜黄文熙讲座〔1〕中详细分析了我国长江中下游两岸广泛分布的、矿物成分以云母和其它深色重矿物的风化碎片为主的片状砂的工程特性,比较了与 福建石英质砂在变形特性、动静强度特性、抗液化性能方面的差异,指出片状砂有某些特殊工程性质。然而人们以往对砂的工程性质的了解,主要根据对石英质砂的大量室内外试验结果。周镜院士指出:“众所周知,目前我国评价饱和砂液化势的原位测试方法,即标准贯入法和静力触探法,主要是依据石英质砂地层中的经验,特别是唐山地震中的经验。有的规程中用饱和砂的相对密度来评价它的液化势。显然这些准则都不宜简单地用于长江中下游的片状砂地层”。我国长江中下游两岸广泛分布的片状砂地层具有某些特殊工程性质,与标准石英砂的差异说明土具有明显的区域性,这一现象具有一定的普遍性。国内外 岩土工程师们发现许多地区的饱和粘土的工程性质都有其不同的特性,如 伦敦粘土、波士顿蓝粘土、 曼谷粘土、Oslo粘土、Lela粘土、上海粘土、 湛江粘土等。这些粘土虽有共性,但其个性对工程建设影响更为重要。
我国地域辽阔、岩土类别多、分布广。以土为例,软粘土、黄土、 膨胀土盐渍土红粘土有机质土等都有较大范围的分布。如我国软粘土广泛分布在 天津连云港上海杭州宁波温州福州湛江广州深圳南京武汉昆明等地。人们已经发现上海粘土、湛江粘土和昆明粘土的工程性质存在较大差异。以往人们对岩土材料的共性、或者对某类土的共性比较重视,而对其个性深入系统的研究较少。对各类各地区域性土的工程性质,开展深入 系统研究是岩土工程发展的方向。探明各地区域性土的分布也有许多工作要做。岩土工程师们应该明确只有掌握了所在地区土的工程特性才能更好地为 经济建设服务。

本构模型研究/岩土工程



在经典土力学中沉降计算将土体视为弹性体,采用布西奈斯克公式求解附加应力,而稳定分析则将土体视为刚塑性体,采用极限平衡法分析。采用比较符合实际土体的应力-应变-强度(有时还包括时间)关系的本构模型可以将变形计算和稳定分析结合起来。自Roscoe与他的学生(1958~1963)创建 剑桥模型至今,各国学者已发展了数百个本构模型,但得到工程界普遍认可的极少,严格地说尚没有。岩体的应力-应变关系则更为复杂。看来,企图建立能反映各类岩土的、适用于各类岩土工程的理想本构模型是困难的,或者说是不可能的。因为实际工程土的应力-应变关系是很复杂的,具有非线性、弹性、塑性、粘性、剪胀性、各向异性等等,同时,应力路径、强度发挥度、以及岩土的状态、组成、结构、温度等均对其有影响。
开展岩土的本构模型研究可以从两个方向努力:一是努力建立用于解决实际 工程问题的实用模型;一是为了建立能进一步反映某些岩土体应力应变特性的 理论模型。理论模型包括各类弹性模型、弹塑性模型、粘弹性模型、粘弹塑性模型、内时模型和损伤模型,以及结构性模型等。它们应能较好反映岩土的某种或几种变形特性,是建立工程实用模型的基础。工程实用模型应是为某地区岩土、某类岩土工程问题建立的本构模型,它应能反映这种情况下岩土体的主要性状。用它进行 工程计算分析,可以获得工程建设所需精度的满意的分析结果。例如建立适用于基坑工程分析的上海粘土实用本构模型、适用于沉降分析的上海粘土实用本构模型,等等。笔者认为研究建立多种工程实用模型可能是本构模型研究的方向。
在以往本构模型研究中不少学者只重视本构方程的建立,而不重视模型参数测定和选用研究,也不重视本构模型的验证工作。在以后的研究中特别要重视模型参数测定和选用,重视本构模型验证以及推广应用研究。只有这样,才能更好为工程建设服务。

不同介质间相互作用/岩土工程


李广信(1998)认为岩土工程不同介质间相互作用及共同作用分析研究可以分为三个层次:①岩土材料微观层次的相互作用;②土与复合土或土与加筋材料之间的相互作用;③地基与建(构)筑物之间相互作用〔2〕。
土体由固、液、气三相组成。其中固相是以颗粒形式的散体状态存在。、气三相间相互作用对土的工程性质有很大的影响。土体应力应变关系的复杂性从根本上讲都与土颗粒相互作用有关。从颗粒间的微观作用入手研究 土的本构关系是非常有意义的。通过土中固、液、气相相互作用研究还将促进非饱和土 力学理论的发展,有助于进一步了解各类非饱和土的工程性质。
与土体相比,岩体的结构有其特殊性。岩体是由不同规模、不同形态、不同成因、不同方向和不同序次的结构面围限而成的结构体共同组成的综合体,岩体在工程性质上具有不连续性。岩体工程性质还具有各向异性和非均一性。结合岩体断裂力学和其它新理论、新方法的研究进展,开展影响工程岩体稳定性的结构面几何学效应和力学效应研究也是非常有意义的。
天然地基不能满足建(构)筑物对地基要求时,需要对天然地基进行处理形成 人工地基。桩基础、复合地基和均质人工地基是常遇到的 三种人工地基形式。研究桩体与土体、复合地基中增强体与土体之间的相互作用,对了解桩基础和复合地基的承载力和变形特性是非常有意义的。
地基与建(构)筑物相互作用与共同分析已引起人们重视并取得一些成果,但将共同作用分析普遍应用于 工程设计,其差距还很大。大部分的工程设计中,地基与 建筑物还是分开设计计算的。进一步开展地基与建(构)筑物共同作用分析有助于对真实工程性状的深入认识,提高工程设计水平。现代计算技术和计算机的发展为地基与建(构)筑物共同作用分析提供了良好的条件。目前迫切需要解决各类 工程材料以及相互作用界面的实用本构模型,特别是界面间相互作用的合理模拟。

岩土工程测试技术/岩土工程



岩土工程测试技术不仅在岩土工程建设实践中十分重要,而且在岩土工程理论的形成和发展过程中也起着决定性的作用。理论分析、室内外测试和 工程实践是岩土工程分析三个重要的方面。岩土工程中的许多理论是建立在试验基础上的,如Terzaghi的 有效应力原理是建立在压缩试验中孔隙水压力的测试基础上的,Darcy定律是建立在渗透试验基础上的,剑桥模型是建立在正常固结粘土和微 超固结粘土压缩试验和等向三轴压缩试验基础上的。测试技术也是保证岩土工程设计的合理性和保证施工质量的重要手段。
岩土工程测试技术一般分为室内试验技术、原位试验技术和现场 监测技术等几个方面。在原位测试方面,地基中的位移场、应力场测试,地下结构表面的土压力测试,地基土的强度特性及变形特性测试等方面将会成为研究的重点,随着总体测试技术的进步,这些传统的难点将会取得突破性进展。虚拟测试技术将会在岩土工程测试技术中得到较广泛的应用。及时有效地利用其他学科 科学技术的成果,将对推动岩土工程领域的测试技术发展起到越来越重要的作用,如电子计算机技术、 电子测量技术、光学测试技术、航测技术、电、磁场测试技术、声波测试技术、遥感测试技术等方面的新的进展都有可能在岩土工程测试方面找到应用的结合点。测试结果的可靠性、可重复性方面将会得到很大的提高。由于整体科技水平的提高,测试模式的改进及测试仪器精度的改善,最终将导致岩土工程方面测试结果在可信度方面的大大改进。

岩土工程问题分析/岩土工程



虽然岩土工程计算机分析在大多数情况下只能给出定性分析结果,但岩土工程计算机分析对工程师决策是非常有意义的。开展岩土工程问题计算机分析研究是一个重要的研究方向。岩土工程问题计算机分析范围和领域很广,随着计算机技术的发展,计算分析领域还在不断扩大。除前面已经谈到的本构模型和不同介质间相互作用和共同分析外,还包括各种 数值计算方法,土坡稳定分析,极限数值方法和概率数值方法,专家系统、AutoCAD技术和 计算机仿真技术在岩土工程中应用,以及岩土工程反分析等方面。岩土工程计算机分析还包括动力分析,特别是抗震分析。岩土工程计算机 数值分析方法除常用的 有限元法和有限差分法外, 离散单元法(DEM)、拉格朗日元法(FLAC),不连续变形分析方法(DDA),流形元法(MEM)和半解析元法(SAEM)等也在岩土工程分析中得到应用〔3〕。
根据原位测试和现场监测得到岩土工程施工过程中的各种信息进行反分析,根据反分析结果修政设计、指导施工。这种 信息化施工方法被认为是合理的施工方法,是发展方向。

岩土工程可靠度分析/岩土工程



在建筑结构设计中我国已采用以概率理论为基础并通过 分项系数表达的极限状态设计方法。地基基础设计与上部结构设计在这一点尚未统一。应用概率理论为基础的极限状态设计方法是方向。由于岩土工程的特殊性,岩土工程应用概率极限状态设计在技术上还有许多有待解决的问题。目前要根据岩土工程特点积极开展岩土工程问题可靠度分析理论研究,使上部结构和地基基础设计方法尽早统一起来。
环境岩土工程研究
环境岩土工程是岩土工程与环境科学密切结合的一门新学科。它主要应用岩土工程的观点、技术和方法为治理和保护环境服务。人类生产活动和工程活动造成许多 环境公害,如采矿造成采空区坍塌,过量抽取地下水引起区域性地面沉降,工业垃圾、城市生活垃圾及其它废弃物,特别有毒有害废弃物污染环境,施工扰动对周围环境的影响等等。另外, 地震、洪水、风沙、泥石流、滑坡、 地裂缝、隐伏岩溶引起 地面塌陷等灾害对环境造成破坏。上述环境问题的治理和预防给岩土工程师们提出了许多新的研究课题。随着城市化、工业化发展进程加快,环境岩土工程研究将更加重要。应从保持良好的 生态环境和保持可持续发展的高度来认识和重视环境岩土工程研究。

按沉降控制设计理论/岩土工程



建(构)筑物地基一般要同时满足承载力的要求和小于某一变形 沉降量(包括小于某一沉降差)的要求。有时承载力满足要求后,其变形和沉降是否满足要求基本上可以不验算。这里有二种情况:一种是承载力满足后,沉降肯定很小,可以不进行验算,例如 端承桩桩基础;另一种是对变形没有严格要求,例如一般路堤地基和砂石料等松散原料堆场地基等。也有沉降量满足要求后,承载力肯定满足要求而可以不进行验算。在这种情况下可只按沉降量控制设计。
在深厚软粘土地基上建造建筑物,沉降量和差异沉降量控制是问题的关键。软土地基地区建筑地基工程事故大部分是由沉降量或沉降差过大造成的,特别是不均匀沉降对建筑物的危害最大。深厚软粘土地基建筑物的沉降量与工程投资密切相关。减小沉降量需要增加投资,因此,合理控制沉降量非常重要。按沉降控制设计既可保证建筑物安全又可节省工程投资。
按沉降控制设计不是可以不管 地基承载力是否满足要求,在任何情况下都要满足承载力要求。按沉降控制设计理论本身也包含对承载力是否满足要求进行验算。

基坑围护体系稳定/岩土工程



随着高层建筑的发展和城市地下空间的开发, 深基坑工程日益增多。基坑工程围护体系稳定和变形是重要的研究领域。

基坑工程围护体系稳定和变形研究包括下述方面:土压力计算、围护体系的合理型式及适用范围、围护结构的设计及优化、基坑工程的“时空效应”、围护结构的变形,以及基坑开挖对周围环境的影响等等。基坑工程涉及土体稳定、变形和渗流三个基本问题,并要考虑土与结构的共同作用,是一个综合性课题,也是一个 系统工程
基坑工程区域性、个性很强。有的基坑工程土压力引起围护结构的稳定性是主要矛盾,有的土中渗流引起流土破坏是主要矛盾,有的控制基坑周围地面变形量是主要矛盾。目前土压力理论还很不完善,静止土压力按经验确定或按半 经验公式计算,主动土压力和被动土压力按库伦(1776)土压力理论或朗肯(1857)土压力理论计算,这些都出现在Terzaghi有效应力原理问世之前。在考虑地下水对土压力的影响时,是采用水土压力分算,还是采用水土压力合算较为符合实际情况,在学术界和工程界认识还不一致。
作用在围护结构上的土压力与挡土结构的 位移有关。基坑围护结构承受的土压力一般是介于主动土压力和静止土压力之间或介于被动土压力和静止土压力之间。另外,土具有蠕变性,作用在围护结构上的土压力还与作用时间有关。

复合地基/岩土工程


随着 地基处理技术的发展,复合地基技术得到愈来愈多的应用。复合地基是指天然地基在地基处理过程中部分土体得到增强或被置换,或在天然地基中设置加筋材料,加固区是由基体(天然地基土体)和增强体两部分组成的人工地基。复合地基中增强体和基体是共同直接承担荷载的。根据增强体的方向,可分为竖向增强体复合地基和水平向增强体复合地基两大类。根据荷载传递机理的不同,竖向增强体复合地基又可分为三种:散体材料桩复合地基、柔性桩复合地基和刚性桩复合地基。
复合地基、浅基础和桩基础是目前常见的三种地基基础形式。浅基础、复合地基和桩基础之间没有非常严格的界限。 桩土应力比接近于1.0的土桩复合地基可以认为是浅基础,考虑桩土共同作用的摩擦桩基也可认为是刚性桩复合地基。笔者认为将其视为刚性桩复合地基更利于对其荷载传递体系的认识。浅基础和桩基础的承载力和沉降计算有比较成熟的理论和工程实践的积累,而复合地基承载力和沉降计算理论有待进一步发展。目前复合地基计算理论远落后于复合地基实践。应加强复合地基理论的研究,如各类复合地基承载力和沉降计算,特别是沉降计算理论;复合地基优化设计;复合地基的抗震性状;复合地基可靠度分析等。另外各种复合土体的性状也有待进一步认识。
加强复合地基理论研究的同时,还要加强复合地基新技术的开发和复合地基技术应用研究。

地基性状/岩土工程



在周期荷载或动力荷载作用下,岩土材料的强度和变形特性,与在静荷载作用下的有许多特殊的性状。动荷载类型不同,土体的强度和变形性状也不相同。在不同类型动荷载作用下,它们共同的特点是都要考虑加荷速率和加荷次数等的影响。近二三十年来,土的动力荷载作用下的剪切变形特性和土的动力性质(包括变形特性和动强度)的研究已得到广泛开展。随着高速公路、高速铁路以及 海洋工程的发展,需要了解周期荷载以及动力荷载作用下地基土体的性状和对周围环境的影响。与一般 动力机器基础的动荷载有所不同,高速公路、高速铁路以及海洋工程中其外部动荷载是运动的,同时自身又产生振动,地基土体的受力状况将更复杂,土体的强度、变形特性以及土体的蠕变特性需要进一步深入的研究,以满足工程建设的需要。交通荷载的周期较长,交通荷载自身振动频率也低,荷载产生的振动波的波长较长,波传播较远,影响范围较大。高速公路、高速铁路以及海洋工程中的地基动力响应计算较为复杂,研究交通荷载作用下地基动力响应计算方法,从而可进一步研究交通荷载引起的荷载自身振动和周围环境的振动,对实际工程具有广泛的应用前景。

岩土工程中的勘察规范/岩土工程


岩土工程建设首先必须按照既定的勘察规范进行工程设计,然后查明不良地质作用和地质灾害,并作出正确的勘察报告,之后才能进行有条不紊的施工。
①先勘察、后设计、再施工。这既是《建设工程质量管理条例》的规定,也是工程建设必须遵守的程序,更是国家一再强调的基本政策。但多年来,一些工程不进行岩土工程勘察就设计施工,造成工程安全事故或安全隐患。例如:轰动全国的2000年5月1日重庆武隆县的边坡垮塌事件,致使一幢建筑面积为4061平方米的9层楼房被摧毁掩埋,造成79人死亡,4人受伤。经调查认定,这起地质灾害事故的发生,既有地质原因,也有诸多的人为因素,其中之一是业主及施工组织者在没有任何勘察、设计资料的情况下,进行坡地的切坡施工,造成严重的工程事故。为此,明确规定,各项工程建设在设计施工之前,必须按基本建设程序进行土工程勘察。
②勘察主要是为设计服务的,我国的工程设计程序,对大型、特大型工程的工程设计一般分选址阶段设计、初步设计、施工图设计,所以对应于设计各阶段的要求,需进行可行性研究阶段勘察、初步勘察和详细勘察。工程条件、地质条件简单的工程可直接进行详细勘察。详细勘察是按单体建筑或建筑群进行勘察,提供详细的地质资料,对建筑地基作岩土工程评价,提出对地基类型、基础形式、地基处理、基坑支护、工程降水、不良地质作用防治等方面的建议,满足施工图设计要求。
③80年代以来,我国开始推行岩土工程体制,勘察工作不但需要反映场地的地质条件,而且要结合工程设计、施工条件以及地基处理要求进行岩土工程评价,提出解决岩土工程的建议,避免勘察和设计之间在了解自然、认识自然和改造利用自然方面的脱节。
④很多地区地质条件复杂,容易产生危害工程安全和环境安全的地质灾害,因此必须严格按照岩土工程中的勘察规范进行勘察分析,并要对其发展趋势作出预测和预防。

特殊岩土工程问题研究/岩土工程



展望岩土工程的发展,还要重视特殊岩土工程问题的研究,如:库区水位上升引起周围山体边坡稳定问题;越江越海地下隧道中岩土工程问题;超高层建筑的超 深基础工程问题; 特大桥、跨海大桥超深基础工程问题;大规模地表和地下工程开挖引起岩土体卸荷变形破坏问题;等等。
岩土工程是一门应用科学,是为工程建设服务的。工程建设中提出的问题就是岩土工程应该研究的课题。岩土工程学科发展方向与土木工程建设发展态势密切相关。世界土木工程建设的热点移向 东亚、移向中国。中国地域辽阔,工程地质复杂。中国土木工程建设的规模、持续发展的时间、工程建设中遇到的 岩土工程技术问题,都是其它国家不能相比的。这给我国岩土工程研究跻身世界一流并逐步处于领先地位创造了很好的条件。展望21世纪岩土工程的发展,挑战与机遇并存,让我们共同努力将中国岩土工程推向一个新水平。 


2017-01-07 0 /
大杂烩
/
标签:  岩土工程

评论回复

回到顶部